
ISIIRR-80-84
October 1980

\toll

Neil M. Goldman
David S. Wile

A Database Foundation for Process Specifications

Apprto" for puiWc rehae; I

INFORMATION SCIENCES INSTITUTE

04676 Admira0y WalMrina del Reyl5lifornhr 90291
A NVER$1I Y of SOUTHERN CALIFORNIA ,(213) 822-1511i

8 0 --- -1-2-5

UNCLA S TFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

.4 UI2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

OSI/RR-80-84 Z-C
4. T"1 L ail.) tt e)yPE OF REPORT b PERIOD COVERED

A Database Foundation for Process Research
Specifications*_~

L-AwweCONTRACT OR GRANT NUMSER(a)

Neil M. oldman - . .
David ile DAHC15-72-C-6308

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0 . ,ROGA i LUIMENT-RO"

USC/Information Sciences Institute 40,

4676 Admiralty Way
Marina del Rey, CA 90291 .

I1. CONTROLLING OFFICE NAME AND ADDRESS .Aao .E

Defense Advanced Research Projects Agency Octemt ?280
1400 Wilson Blvd. , U.

Arlington , VA 22209
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS&. OECL ASSI Il CATION/ DOWNGRADING
SCHEDULE

1. DISTRIBUTION STATEMENT (of thile Report)

This document is approved for public release and sale;
distribution is unlimited.

17. OISTRIBUTION STATEMENT (of the abstract entered In Stock 20, If different from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aide If necesay And Identify by black nhsber)

abstract data model, formal process specification language, formal

specification, natural language, specification language

20. ABSTRACT (Continue on revere olde if neceeay and Identify by block Imbe)

/

(OVER) .-'

DD 1 1473 EDITION O' I NOV 65 S OBSOLETE

S/N oI02-014- 6601 ITN1 .ARq TIT F
SECURITY CLASSIFICATION Of THIS PAOE (Blen Des 1;e1ed)

~ _ _ _ _ _ _

UNCLASSIFIED
SECURITY CLASSIFeCATION OF THIS PAGE(VMOR Date Untoffd)

20. OBSTRACT

A language suitable for system specification should allow a specification to
be based on a cognitive model of the process being described. In part, such a
language can be obtained by properly combining certain conceptual abstractions
of data models with reference and control concepts designed for programming
languages. Augmenting the resulting language with formal versions of several
natural language constructs further decreases the cognitive distance between
specifications of large systems and the modelled world.

Several core elements of such a specification language are developed in this
report. Emphasis is placed on modes of expression, such as declarative
constraints and temporal reference, which are derived from natural language
but are not available in existing formal languages.

e n

rC1mT A$1qT l T An
SECURITY CLASSIFICATION OF THIS PA6,rfh., Do.. Entepd)

ISIIRR-80-84

Ocoe a's
Neil M. Goldman
David S. Wile

A Database Foundation for Process Specifications

INFORMATION SCIhiNCIS INSTITU TEi

THIS A[SrAnCH IS SUPPORTED BY THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHC15
7;P C 0308, ARPA ORDER NO. 2223.
VIEWS AND CONCLUSIONS CONTAINED IN THIS REPORT ARE THIE AUTHORS' AND SHOULD NOT BE INTERPRETED AS
REP'UESENt(NG THe OFFICIAL OPINION OR POLICY Of DARPA, THE U.S GOVERNMENT, OR ANY PERSON OR AGENCY
CONNECTED WITH THEM.

.

lii

CONTENTS

Acknowledgments iv

1. Introduction I

2. Specifying the Domain of a Process 2
2.1 Objects and Types 3
2.2 Relations 4
2.3 Expressions, Patterns, and Predicates 5
2.4 Constraints 8
2.5 l erived Relationships R

3. Specifying the Dynamics of a Process 10
3.1 Control Structures It
3.2 Actions 1.1
3.3 Procedural Requirements 14
3.4 Data Triggered Processing I,$
3.5 Temporal Reference 17
3.0 Process Granularity 19
3.7 Constraints and Non-Determinism 21
3.8 Anomaly Control 24

4. Conclusion 24

References 27

Iv

ACKNOWLEDGMENTS

The Ideas presented in this report arose during lengthy discussions within a closely
knit group of colleagues. As such, the individual contributions of the group members are
Impossible to Identify. The authors would like to acknowledge the major Influence on this
work of other members of this group, consisting of Bob Balzer, Lee Erman, Martin Feather,
and Phil London.

I. INTRODUCTION

A major effort Is tinder way within computer science to design new languages that will

enhance the development of reliable and maintainable software, particularly for large

applications. Through careful structuring [13] and encapsulation [17] of information,

some new programming languages permit hierarchical development of large programs.

Each layer of the hierarchy Is understandable in terms of properties abstracted from

modules in the lower layers. From the definitions of the modules at the base of the

hierarchy, a compiler can (or could) produce an acceptable implementation of the entire

system.

Another line of development has been a search for languages with more expressive

power than Is provided in programming languages [6, 9, 16]. The designers of these
sprcification languages are willing to forego the ability to have their specifications

mechanically compilable into (efficient) implementations. In return, they hope to make it

easier to write a formal specification of a process and, more Important, to increase the

likelihood that the process specified is indeed the one desired. 1

Balzer and Goldman [2] enumerate several language principles claimed to be beneficial

for both the creation and maintenance of large software systems. These include the
requirement that a specification be a cognitive model of the process being specified. In
qeneral, a software system Is Intended to represent the activity in some "ideal world,"
which may be an abstraction of a real-world process, a purely mental conception of the

desired behavior, or a combination of the two. We hope to minimize the "translation
distance" from this ideal world to its formal representation by permitting that
representation to model directly the ideal insofar as possible. This should increase our

confidence that a specification in fact matches the intended ideal.

Maintenance involves, as Its first step, translating changes to the ideal world into

corresponding changes to the specification. If the specification is a cognitive model, the
amou|nt of change required In the specification should be comparable to the amount of
change In the ideal. We believe that most maintenance changes represent fairly small

changes to the Ideal world.

A good source of Ideas for language components that help In constructing cognitive

models Is natural language. Natural language has been roundly criticized In some circles
[12] because of its Informality and ambiguiity. Clearly a formal language cannot adopt

theso characteristics, although they contribute significantly to the utility of natural

lainarliaes for communication. But natural languages also contain a variety of modes of
expression that are richer than those provided by even the highest level programming
Innquaqes., yet that have readily formalizable counterparts. A number of these are

developed in this report. One reason for their absence from programming languages Is

undoubtedly the difficulty of providing for (efficient) computer implementation of their

tWP thin of oig language as specification oriented. Our goal is to have programs prodiced from specifications through
a itansfotmational development (3].

2 A DATABASE FOUNDATION

qeneral use. This Is not a restriction on natural languages, which are generally
concerned with communicating only the requisite external behavior of a process. The

Implementation of that process, whether on a computer or otherwise, is an orthogonal
concern.

Since the pioneering work of Codd [6] on relational data bases, several distinct data
models have been developed and studied. An often noted characteristic of these models
Is that thpy provide not only the basis for machine storage and manipulation of data, but
a cnqnitive model of the data domain as well. In fact, these data models bear great
similarity to the semantic nets used in artificial intelligence programs for understanding
natural language, as demonstrated In [15].

The specification language described below is based on such a data model. We
believe that any process can, and should, be defined In terms of a variety of entity types,
spcific to the process, which are associated with one another by means of process
specific Yeations, and acted upon by process specific actions. These actions consist of
combinations of creation and destruction operations on these entities and associations.

Section 2 of this report develops the static aspects of this model. It presents means
for specifying the structural regularity of the data domain, including a hierarchy of object
types, relations on those types, constraints on data states, and derived relationships
(alternative "views"). It also lays out a powerful query language for expressing
predicntes on the data states and for referring to objects In those states. Section 3
Introduces the means for defining the d.nainic aspects of a process. These mechanisms
rely on the underlying data model to define a number of rich constructs not available in
even very high-level programming languages. We point out how each of these
corresponds to a descriptive capability in natural language, and why each enhances the

specification of large systems.

Notation

In this report, meta-concepts of the language are printed within angle brackets ((>).
In syntactic templates, braces ((}) enclose optional elements, and ellipses (...) Indicate
allowable repetition of the preceding constituent. The "reserved words" of the language
are underlined.

The report uses examples drawn from an ideal world of ships, ports, piers, cargos, etc.
Within the examples and text describini them, the names of these "types" are printed In
bold lower case. Variable and parameter names are printed In italicized lower case. The
names of relations and actions are printed in BOLD UPPER CASE. Finally, objects
referred to literally are printed In Mixed Case Italics.

2. 'PECIFYING THE DOMAIN OF A PROC:ESS

An Ideal world Is not an arbitrary collection of objects related In unstructured ways.
Rather, the objects can be categorized into various type classifications. There are only

............ o -.. . . . ,

FOR PROCESS SPECIFICATIONS 3

certain kinds of relationships in which the various types of objects may participate.
Neither does the ideal world permit arbitrary combinations of these objects and
relationships to coexist.

It Is Important to capture the structure of the ideal world in the specification. Doing
this actually makes It easier to specify the process taking place in the ideal world. Even
more Important, It enhances our ability to alter the specification so that it conforms to a
chanqed ideal world. This Is the source of our ability to maintain software systems
created from the specification. The structure of the ideal world is specified through a
variety of (declaration> forms described In the following sections.

2.1 Objects and Types

The various types of objects in the ideal world are named in type declarations. The
simplest type declaration simply lists the names of various types:

ttipe ship: pier; cargo: slip, crewmember end tpe

A name so declared may be used as a (type identifier> elsewhere. Some types may be
subtypes of others; this is declared by including a modifier in a type declaration:

te ailtanker, a kind of ship :
officer, a kind of crewmember

end tLjpe

This declaration states that every oiltanker Is also a ship. Analogously, it makes officer
a subtype of crewmember. Although the collection of oiltankers and ships may change
as a process executes, no object is ever an olitanker but not a ship. There is no need
for the specification to include manipulations of the data specifically to maintain this
invariant; It is ensured by the declaration.

Smith and Smith [14] have pointed out many of the virtues of having such type
hiernrchies from the standpoint of database design. The most salient advantages in a
specification language are that any relations and operations defined on a type are
automatically defined on its subtypes, and that the types can be used in the data
manipulation language to strengthen predicates in a natural and concise manner.

We can also define synonyms for types, and define one type as a restriction of
another:

t qpo message, - string;
latitude, integer in La=,. [-90,901:
longitude, - Integer in ranie (-180,180]

end tUpe

This declaration states that message Is a synonym for the predefined type string, and
that latitude and longitude are particular subranges of the predefined type Integer.

Sometimes a specification must refer to particular Individual objects. These can be
Introduced when their types are declared.

4 A DATABASE FOUNDATION

Lqp port, D (Seattle.Santa Barbaral end tupe

declares that the type port has (at least) two distinct instances, which will be referred
to In the specification by the literals Seattle and Santa Barbara, whereas

type grain, a kind of cargo, =lCorn,Wheat) :
fuel, a kind of cargo, - 1oil, NaturalGasl

end t1=

declares grain and fuel to be subtypes of cargo, with their Instances totally enumerated
by literals. No further instances of grain or fuel may be defined or created.

2.2 Relatinns

Our conception of relations corresponds closely to that seen in Chen's
entity-relationship diagrams [7]. 2 A relation is defined to have some number of roles,
each role having a name and a type. At any stage of a process, each relation contains a
collection of tuples. Each tuple In a relation has an object filling each of Its roles. The
oljct filling a role must be an Instance of that role's type. The role types thus serve to
restrict the tuples that can appear in a relation.

The declaration of an n-ary relation has the form:

relation <relation identifier> (<role>,,...,<role>n);

end rplat ion

Each <role> Is denoted by an (Id:type>, which Is simply an arbitrary name, followed by a
colon, followed by a type Iden"'fler, e.g., s:ship. The Identifier preceding the : is the role
name, and the type Identifier names the role type. By convention, a type name t alone
can be used as an Id:type to abbreviate t:t, and a name of the form t.d, for any digit d, in
plne of t d:t. For example, ship:ship can be abbreviated as ship, and ship.l:shlp as
ship.l.

A relation PORTOFCALL between ships and ports for which they are bound and a
relation SHIPPINGPIER between piers and the cargos that they handle are declared by:

re .t inn
PORTOFCALL (ship, port I;
SHIPPINGPIER (cargo, pier)

end relation

Unless otherwise specified, a relation Is many-to-many (to-many ...). The Ideal world
relationships being modeled by PORTOFCALL and SHIPPINGPIER are both many-to-many.

2tUnhike rhen. we do not distinguish between inter-entity relationships and values of attributes of entities. We believe
this distinction belongs in the realm of implementation. not specification, being based on the usage of information rather
than the natture of the information itself.

FOR PROCESS SPECIFICATIONS 5

The concept of a key of a relation is familiar in relational data bases, and is important
to capture In a specification. One or more keys for a relation can be specified by a
modifier on the relation declaration. Each key consists of one or more role names.
Another Important concept we call covering. A relation covers a role if every object of
that role's type fills that role in at least one tuple in the relation. If a relation covers a
role that Is a key of the relation, then every object of that role's type fills the role In

exactly one tuple In the relation. In this case, we say the relation defines the role.3

relat ion
CAPACITY (ship, volume), defines ship;
CONTAINS(ship,cargo, volume). t is (ship,cargo) ;
PIERPORT (pier, port), defines pier, covers port;
SLIPS(pier, slip), defines slip, covers pier-
BERTH(ship,slip), keu is ship, slip

end relation

These declarations specify that every ship has a single volume as its CAPACITY, that
ships CONTAIN volumes of cargo, but a given ship has only a single volume of a given
cargo at any time, every pier is in a particular port and every port has at least one
pier, every slip is at a particular pier and every pier has at least one slip, and that
BERTH relates subsets of ships and slips in a one-to-one correspondence. Just as a
role's type restricts the individual tuples in a relation, a relation's keys and coverings
restrict the collection of tuples in the relation.

2.3 Expressions, Patterns, and Predicates

An <expression> Is a constituent of the language that is used to refer to objects. The
simplest expression is a literal, such as 3000 or Corn, which refers to the same object
wherever It is used in a specification. The referent of a literal is fixed for all time.

A <variable> is a name that may be used as an expression. The referent of a variable
may change frnm one use to another. Each variable in the language Is declared as the
Identifier in . .:type, and the referent of the variable must always be an instance of
the type that appeared in its declaration.

Expressions may be combined by operators and function names, as in a conventional
proqramming language, to produce other expressions. But any expression, no matter how
complex, Is only a means for referring to an object; It does not specify any activity that
changes objects or relationships.

A <pattern> has the form

<relation identifier>(<expression>1, .,. <expression>n)

where the named relation Is n-ary. A pattern matches a tuple If each object filling a role

3 11 is occasionally the case that a role serves as a key for some subtype of its type, but not for the entire type.
S,mitarly, a relation may cover a role for some subtype of the role's type. It is possible to succinctly declare key,
covering, and defining roles for a subtype of the role's type, but our examples will not require the capability.

6 A DATABASE FOUNDATION

In the tuplo is the referent of the corresponding expression. 4 The correspondence is the

natural positional correspondence between expressions In the pattern and roles in the
relation declaration.

A pattern may be used as a <predicate>. The pattern Is said to be True, or to hold, In

a particular data state if the named relation contains any tuple that matches the

pattern; otherwise It Is said to be False In that state. Also,

<expression> - <expression>

Is n predicate that holds If and only If the expressions have a common referent. Finally,

<expression> isa <type identifier>

holds If the (some) referent of <expression> is an instance of the named type.

Prodicatos may be combined with the logical operators A, V, -, and =) with the traditional
meanings.

Predicates may also be written with quantified variables. Y<Id:type> <predicate>

holds In a qlven data state If <predicate> holds In that state for every assignment of an

exlstlnq object of the quantified variable's type to that variable. 3<id:type> <predicate>

holds If there exists any such assignment for which (predicate> holds For example,

3s: ship, v: volume (CONTAINS (s, Corn, V) A PORTOFCALL(s, Seattle) A v a 20k-Cubic-Meteri

hold,' If there exists some ship bound for Seattle and some volume of Corn of at least

20k-Culir-Afrters on that ship. We say that the predicate holds for the assignment of that

ship and volume to the variables s and to, respectively.

A predicate that would test for the existence of any olitanker bound for Santa Barbara

could be written:

3ship (PORTOFCALL(shipSanta Barbara) A ship ia olItanker)

or more naturally as

3oiltanker PORTOFCALL(oiltanker,Santa Barbara)

which might hold for several distinct assignments of oiltankers to the variable oiltanker.

English noun phrases are a very rich form of expression. They provide the power to

refor to objects by describing them; I.e., by predicating how they relate to other,

possibly also described, objects: e.g., "a ship containing at least 20000m3 of corn and

bound for Seattle." Through the use of possessive and reflexive pronouns, the
descriptions can even refer to the object being described: "an employee who manages

4As we shall see, some expressions may be non-determiistic, having multiple referents. A pattern matches a tuple
provided the objects in the tuple are among the refererts of the corresponding expressions.

Actually, the predicate , could not be used to compare objects of type volume unless an ordering on volumes was
deflned. Such orderongs are not covered in this report. I

FOR PROCESS SPECIFICATIONS 7

lilsof.16This richness Is available in formalized form through use of the predicate-baied

(<id: type> I <predicate>]

where <predicate> may use the variable name In (id:type> freely. If
J3ld:typo> (predicate> holds for some assignment of an object to that variable, then
that ob)ject Is a referent of the expression. Such expressions, like their English
Counterparts, may be non-deterministic, having many referents, deterministic, having
exnctly one referent, or anomalous, haviing no referents. 7 Formally, "a ship containing at
least 20000m3 of corn and bound for Seattle" is expressed:

[(s:3h Ip ICONTAINS (s,Corn,[: volume 1z?!20k -Cubic-M eters]) A PORTOFCALL(S,Seattle)] (1)

The expression [(i1d: type) ITrue], which refers to any Instance of some type, may be
ab~brevialted as [(type Identifier>]. it Is common for such expressions to appear in a
paittorni with the type identifier naming the type of the role in which the expression
appears. In that case, the expression may simply be written as the symbol $. Thus,

PORTOFCALL (oiltank erJ , Santa Barbara)

will match tuples In the PORTOFCALL relation having Santa Barbara in the Port role and
any olitanker In the ship role.8 The more general pattern

PORTOFCALL ([ship) .Santa Barbara)

would allow a match for any ship, not just an olitanker, and could be written simply as.

PORTOFCALL(t, Santa Barbara)

It Is also common to find predicate-based expressions In which all uses of the
cIlstlncJ(tished variable In the predicate are In roles of the same type as the variable. In
this case the predicate itself, written with the symbol I replacing the variable, may be
used as an expression. For Instance,

CONTAINS (*. Corn. Iv: volume I v?3OtonsJ) A PORTOFCALL (*, Seattle)

Is equivalent to (I) above.

6 The noun phrase also derives power from is informality. While we sometimes use a fairly ex~plicit verb to indicate a
relaion - - "the captain serving on the ship" - - it is more common to condense the relation to a vague preposition -- "the
rapt~t'n of the ship4 -_- or to simply provide a syntactic indication that some relationship exists - - "the ship's captain."

7 The colecton of referents depends on the collection of tuples in the data base, and on the objects assigned to any
vari,ibles used freely within the predicate.

a This is distinct from the pattern PORTOFCALL(ciltanker,Santa Barbara), which ustis oittanker freely. This pattern
would only match the tupte for the specific oiltanker that was the referent of oiltanker.

8 A DATABASE FOUNDATION

2.4 Constraints

We have seen how role types and relation keys serve to constrain the tuples and
tuple collections that can coexist in a relation. There may also be constraints in the
Ideal world which correspond to tuples and collections of tuples that may not coexist In

the data base as a whole. A declaration of the form:

constraint <predicate>: ... <predicate> end constraint

outlaws any data state In which any of the predicates holds. The constraint

con tra i nt 3oiltanker PORTOFCALL(oiltanker, Santa Barbara) end constraint

prohibits any oiltanker from ever having Santa Barbara as a destination. A second

constraint,

constraint 3js:shlp(CONTAIN(s, fuel],) A CONTAINS(s, (grain],)) End constraint

prohibits the mixing of fuel with grain In a ship at any one time. Thus, for Instance, a ship

could not contain both Oil and Corn.

The essential "meaning" of the CAPACITY relation comes from Its appearance In a
constraint:

constraint ls:ship(X ICONTAINS(s,I,*) > CAPACITY(.,) end constraint

which prohibits the sum of volumes of various cargos contained In a ship from exceeding

the capacity of the ship.

Constraints restrict the data states that a process may legitimately create. They
play a far more central role In the specification language than they do In database

lanquagos. That role Is described in section 3.7 below.

2.5 Derived Relationships

It i s convenient to be able to refer to relationships that are derived from others. For
Instance, a port "handles" Oil if it has a pier at which Oil can be loaded and unloaded. It

is Important to be able to define the "handles" relation in such terms and to use it in

patterns in the same way as any other relation. It is unacceptable for the relationship to
be given an independent definition and manipulated by the specified process in such a
way as to explicitly maintain Its Invariant connection to other relations. This Invariant

should be declared explicitly and Its maintenance ensured by that declaration.

These Invariants are defined by giving the relation a normal declaration, Including roles

and keys, and using It In a derivation as well.

der i vat ion
<derivation name>(<id:type>i <id:type>n)

antecedent <predicate>
consequent <pattern>

end derivation

FOn PROCESS SPECIFICATIONS

In any process state for which

Ic i d: typ~e>, i d: type >n cpredicate>

holds for some assignment to the variables (id:type>1 , the tuple corresponding to
<pnttern> for that assignment Is taken as being implicit In the data base. No distinction
is made in the language between Implicit and explicit relationships.9

The only variables that may appear freely in (predicate) or (pattern> are the
(ld:type) I. Each expression in (pattern) must be deterministic. This ensures that the
tuplo corresponding to (pattern> for any particular assignment to the variables is well
dofinod.

Derivations can be used to define the relationships

- A ship is moored at a pier.

- A ship is in a port.

- A port handles a cargo.

relation MOORAGE(ship,pier), teU is ship:
INPORT(ship, port), e i. ship;
HANDLES (port, cargo)

end relation
:l-r" i v, t i on

DMOOR (ship, pier, slip)
anteced:ient BERTH (ship, slip) A SLIPS (pier, slip)
conqequen t MOORAGE (ship, pier);

D0NP (ship, port, pier)
antecedent MOORAGE (ship, pier) A PIERPORT (pier, port)
consecrijen t INPORT (ship, port);

DHAND (cargo, port. pier)
antrcrdr, nt SHIPPINGPIER (cargo, pier) A PIERPORT (pier, port)
conseljent HANDLES (port, cargo)
end derivation

Note that MOORAGE Is given a derivation In terms of BERTH and SLIPS, and Is Itself
used In the derivation of INPORT. It Is acceptable for a relation to be given several
Independent derivations. The existence of a derivation rule for a relation does not
prohibit the direct insertion of tuples In that relation by the specification. For Instance,
when arriving at a port, there may be a time when the INPORT relationship holds for that
siip before It ever Is positioned in a slip at a pier.

qThe only exception to ths concerns deletion of iuples. Any attempt to delete a tuple that would still exist inplicitly
following Ihe deletion is considered anomalous.

I

10 A DATABASE FOUNDATION

3. SPECIFYING TIIE DYNAMICS OF A PROCESS

The purpose of writing a specification Is to describe formally the behavior that takes
place In the Ideal world. The essence of this behavior is the sequential change in the
colloction of objects and associations. A specification language (statement> Is used to
doflne a transition from one such state to another. The transitions are ultimately
composed of five basic data transitions:

- Object Creation -- Seldom are the literal objects named in the static
domain model the only objects that exist in the ideal world. New piers,
ships, and even ports may come into existence as part of the process. The
creation of a new object Is specified by the statement:

create <type>

This specifies the creation of an entirely new instance of <type>, distinct
from all objects currently (or previously) existing.

- Object Destruction -- The ideal world need not be cumulative. Sometimes

objects cease to exist. The statement

dIestrotA <expression>

specifies the destruction of (expression>'s referent and of all tuples In

which that referent appears.

- T12Ile Insertion -- New associations are created by the statement:

insert <pattern>

which will add to the data base a new tuple matching (pattern). If the
tuplo to be added already holds, the insert operation causes no change.

- Tunl. Oeletlon -- Associations are removed by the statement:

delete <pattern>

which will remove from the data base a tuple matching (pattern>. If no
tuple in the database matches (pattern>, the delete operation causes no
change.

- Tuple Update -- A change of the object filling a particular role in a tuple is
specified by:

update <role-name> in <pattern> to <expression>

which changes the object filling the Indicated role In some tuple in the
database matching (pattern> to the referent of (expression>. More
precisely, the semantics of update are those of a delete followed by an

• I I. 1- . z . .. -l II

FOR PROCESS SPECIFICATIONS 11

insert, 1 0 treated as a single dalabatse change. The symbol oldvatue may
be used In (expression) to reference the object originally filling the role
being updated.

All of these statements, with the exception of create, may be non-deterministic. That
Is, duo to the appearance of non-deterministic expressions within the statements, there
mny b)e distinct chnnges to the data base, each of which meets the semantic
requireiments of the statement. It is occasionally desirable to make a change involving
not just one of the objects specified non-deterministically, but all of them. This can be

specfied with statements destroyall, insertall, deleteall, and updateall. Thus, the
salnry of every officer could be Increased by 5 percent via:

torlatn,]l I salary in SAL((officer] , to 1.OS'oldvalue

3.1 Contrnl Structures

To specify a process, it must be possible to state under what conditions and In what
or(hor vlrinus (ata transitions take place. Control structures are the means for
nccomp)lishiq this. The control structures available in most high-level programming
Innqluaqe. are also useful in specifications. In this report, the only unconventional
control structure Introduced is the dirmen (see section 3.4). Otherwise, we will confine
ourselves to sequencing, conditionals, and iteration.

Soquenclnec Is Indicated by separating successive <statement)s by semicolons:

<statement>; ... <statement>

To meet the syntactic requirements of the language, It Is often necessary to bracket
a sequence of (statement)s so that It may be used as a single (statement>:

litrai<statement>; ... <statement> end

In mathematics, we are familiar with problem descriptions that Include statements such
as "Let x, y, and z be numbers such that P(x,y,z). Then ..." This provides a way of
Introducing some new names, specifying, or restricting, the values to which they refer,
and then using those names In further statements. This facility Is provided for with the
syntax:

heq~ i n
3<id:type>.....<id:type> <predicate>
<statement>; ... <statement>

end

If (predilcnte> holds for some assignmeti to the variables, then the variable environment

1 0 Ths gives u1t4 a meaning both when no luple matches (pattern, and when the altered tuple is identical to an
#-,ting one.

IIThe s are not simply iterahons making a single transhon on each loop, bdt are primitive transitions, as described in

section .3.0.

W"M

12 A DATABASE FOUNDATION

in effect outside this block Is extended accordingly. The (statement)s are then
exectited sequentially In the extended environment. Since the (predicate) may be true
for many distinct extensions, the block may be non-deterministic. If there Is no
assiqnment satisfying (predicate>, the block Is anomalous. 1 2

Conditionality is expressed by a (statement> with the conventional syntax:

if <predicate> Ithen <statement>1l lelse <statement> 21

which has the meaning of (statement> 1 If (predicate> holds and of (statement> 2

othorwise. A conditional (expression> is specified analogously:

.Lf <predicate> then <expression>1 else <expression>2

Another useful capability Is to have a conditional (statement> in which the predicate
contins existentially quantified variables, permitting the "then" clause to refer to the
assi(jnmont that satisfied the predicate. In a conditional <statement> or (expression>
having a predicate of the form:

]<var i at I e>. .. .,<var iab I e> <pred i cate>

the vnrinble environment surrounding the conditional Is extended for the "then" clause to
Incorpornte the portion of the assignment satisfying the predicate for the existentially
qu.ntified variable.. The variable environment for the "else" clause is that in effect
arrotnd the conditional Itself. For example, the formal representation of "if there is a ship

In Santa Barbara containing 20000m3 of grain, schedule it to stop in Seattle" Is:

if 3ship(INPORT (ship,Santa Barbara) A
CONTAINS (ship, (grain], [u: volumelv a 201t-Cubic-Meters]))

thnn inser t PORTOFCALL (ship, Seattle)

rinlly, a simple but power' il form of ite;ration consists of doing the same activity In
eirt,10 variable assignment for which some predicate holds:

ishrrnvor <predicate> do <statement>

specifies doing <statement> In etvry extended assignment for which (predicate> holds.
The extensions are determined, as in the case of conditionals, by the leading
existentially quantified variables on (predicate>. The order of assignments in which
<statement> is to be done is non-deterministic. All are calculated with respect to the
data state oxisting prior to the initiation of the iteration; the effects of (statement> in
one environment have no bearing on the collection of assignments used. The example
above may be rewritten to send all ships with 20000m3 of grain to Seattle:

I Ihnr r vr

Jsiip (INPORT(ship. Santa Barbara)
CONTAINS(ship. (grain). Cu: volumelu > 20k-Cubic-Meters]))

do in',r t PORTOFCALL(ship.Seartle):

12 One of the powers of English is that it rarely forces us to introduce "variable" names like x, y, and z. Unfortunately,

that pnwor appears to derive in large part from the informal aspect of the language.

fOR PFIOCCSS SPECIFICATIONS 13

3.2 Actios

The basic specifier-defined building blocks of a specification are actions. They are the

analog of p~rocedures In a program. An action Is a parameterized i(statement> that
expresses some data transition, or sequence of transitions, In terms of Its parameters.
The <statement>, or definition, specifies the transition(s) through the use of the primitive
datibaise operations and invocations of other actions. An action Is declared by:

ac t i on
<ac t ion ident if ier> (0fornial parameter> ... <formal parameter>),

dipfinition <statement>;

enrl aict i on

The (action Identifier), provides a name for the action. Each i(formal parameter> Is
s1m1)Iy an (id:tyi~e>. The variable environment for (statement>, consists of the (format
pnrlimoter~s. with an assignment in which each parameter refers to the object used as
the corresponding actual parameter in an invocation.

An Invocation Is denoted by:

<action ident if ier> (<expression>. <,, expression>)

with the usuial positional correspondence of (expression>s in the invocation to the
panrameters of the action. The referents of the <expression~s In the invocation
environment become the referents of the corresponding parameters of the action within
Its definition. If any of the (expression~s Is anomalous, then the Invocation Is
anomalouts.

Exaniple

One activity In shipping Is the loading of a given volume of some cargo onto a ship.
This action would be declared by:

ac tion
LOADSHIP (ship, cargo. incr: volume),

clef ini t on
if CONTAINS ishap.cargoS) then

update volume in CONTANS(ship, cargo,$)i to a IdvalIue+incr
elIse insert CONTAINS I(ship, cargo, incy)

end action

The definition of LOADSHIP Is simply to Increment the volume of cargo contained by ship
by anl amount incr, or to Insert a new CONTAINS tupie If ship did not contain any cargo

139By specifying a default volume for CONTAINS to be a litersl Ovolum. (th, additivel IdentiY for Volumies), the
conditional could be replaced by its "then" clause. Doifaults are not discussed in this reort, but are a valuable
specification mechanism. Also, the operator + could not lie used with objects of type voluMe unless given a suitabl
definition in the specification.

14 A DATABASE FOUNDATION

Another activity is the movement of a ship to a pier, which must happen when the ship

Is to he loaded or unloaded. We shall declare the action by:

ac t ion
MOVESHIP i'hip, pier).

def ini t ion
if MOORAGE (ship. pier) then

comment no movement needed end comment else
i slip in BERTH(ship.S) to SLIPS(pier.,')

enl act ion

If thn ship is already at the specified pier, then MOVESHIP does nothing. Otherwise, it

updates the BERTH tuple for the ship to indicate that It Is at some slip at the desired

pier. This slip is specified with the non-deterministic pattern expression SLIPS(pier,l).

3.3 Procedural Requirements

In the Ideal world, there is not only regularity in the state of data relationships, but in

the realm of processing as well. The regularity in the types of objects on which a given

action Is performed is captured by the typing of the formal parameters of an action. At

nny point in a process, it may be the case that the data and variable assignments must

satisfy some predicate for the execution to be feasible. This can be specified by

including <requirement)s at appropriate points In the control structure:

re'rjuire <predicate>

A re(rlro declaration can appear wherever a statement can appear. It signifies that the

predicate must be trie at the point in execution where it appears.

Two common points to include (requirement)s In a specification are at the initiation

and completion of actions. These have been singled out syntactically and may be

rieclnrrd as preconditions and postconditions of an action, rather than included within the

action's definition.
1 4

It is sometimes desirable to state a requirement on the transition achieved by an

action, rather than (or in addition to) requirements on the initial and final states. This

can be lone with a syntactic means in the postcondition. Any expression or predicate In

a postcondition preceded by the marker old refers to Its value or truth In the data state
7T5at action Initiation, rather than termination.

Exam ple

Suppose the action MOVESHIP defined above can, in the ideal world, only be used to

move a ship to a pier If the ship is already in the port containing that pier. This fact Is

14Preconditons and postconditions may refer to the action's operands by using the formal parameter names as free

variables.

SSection 3.5 describes a more general faCily for refeience to past data states.

FOR PROCESS SPECIFICATIONS 15

captured by placing a precondition on the action:

act ion
MOVESHIPfs/hip. pier),

Qrecond it ion INPORT(ship, PIERPORT(pi er, ')).
def ini t ion ...

r c ct i on

lho requirement that cargo can only be loaded onto a ship if it is moored at a pier
which lnclies that cargo can be captured by a precondition on the action LOADSHIP:

act ion
LOADSHIP (ship , cargo, incr: volume),

vrocondi t on 3pier SHIPPINGPIER(cargo, pier) A MOORAGE (ship, pier).

end action

Orcnsionally It Is necessary for a port to deal with a new class of cargo. This may
necessitate a major shakeup In the assignment of cargos to piers in that port. The
nction that makes the necessary changes might need to take many factors into account,
and mihIlht well be expressed best with some non-determinism, since several
rn''i(inments might be equally acceptable. However, it might be absolutely

unreccCel)table, to doassign a Natural ,as pier (due to excessive costs or government
rorIlntions). Also, the reassignment must still leave all originally handled cargos still
handled, though not necessarily at the same pier.

act ion
ADDCARGO (cargo, port).

Iprornndition - HANDLES(port.cargo),
dr-finitinn ...
pn.tcondi t ion Vpirr(olcl SHIPPINGPIER(Natural Gaspier) ->

SHIPPINGPIER(Natural Gas. pier))
potronli t ion Ycargo(od HANDLES (port, cargo) -> HANDLES (port, cargo))

end action

3.4 Data Triggered Processing

In describing a process, It Is convenient to be able to make statements of the form

"whenever (trigger> Is the case, do (response)". (trigger) is some condition on the

obljcts being manipulated by the process and, perhaps, on the control state of the

process as well. (response) Is itself a process to be performed when that condition Is

met.

Since all Information about the objects is captured in the data base, the predicate

lanquaqe provides a natural formalism for expressing those triggering conditions
dependent on object associations and types.

Such ,f'mons have been permitted in various Al languages (4, 5]. Since these are

proqramming languages, rather than specification languages, they have severely

restricted the expressive power permitted In the trigger condition. As a result,

16 A DATABASE FOUNDATION

compuitations triggered by complex conditions have to be "programmed" in these

lan(tiuages, spreading pieces of the condition throughout the program. In a specification,

however, the full power of the predicate language, Including typed variables, logical

operators, and quantification, can be permitted in the trigger without sacrificing any

desirable specification properties.

Syntactically, (demon>s may be declared:

demon

<clenon identifier>(<demon parameter> ... <demon parameter>),
triclqer <predicate>,
response <statement>;

endc demon:

The <demon identifer> becomes the name of the demon. Each (demon parameter> is an

(ld:typ.o. A demon specifies that whenever a single database transition leaves a state

in which the predicate holds with respect to some assignment to the demon parameters,

and the predicate did not hold for that assignment In the pre-transition state, then

(statement> Is to be executed, In the post-transition state, for that assignment. A

sinqle transition may trigger several demons, and may trigger a single demon with several

n.signmonts. In this case, all such demons are to have their responses performed for all

assignments, but the order In which this is to happen is non-deterministic.

On occasion, the triggering condition for a demon can be described best in terms of a

transition, rather than in terms of a state, e.g., "if the price of any commodity jumps by

over 7 percent, ..." To express such demons, the symbol old may be used lexically

within the trigger In the same way as In a postcondition (see section 3.3).

Example

Suppose the shipping system receives periodic updates on the progress of ships at

son, In tile form of latitude and longitude readings and compass headings. Suppose it

also receives periodic reports on weather conditions at various locations. Finally,

suppose It Is capable of sending messages to ships. To support this in the specification,

the domain model could Include:

tupe
weather, IClear, Stormyli
heading, - Integer in range 10,36011
shiploc

end Lye:

relation
WEATHERSTATUS (shiploc, wather), eg is shiploc;
SHIPPOS (ship,shiploc. heading), ke is ship,shiploc;
COORDINATES (shiploc, latitude, longitude),

defines shiploc, keg is ilatitude, longitude)

end relation;

act ion

ron PROCESS SPECIFICATIONS 17

14

BROADCAST (ship. message). de f i nit ion ...
end action;

A demon can specify that a warning Is to be sent to any ship approaching a stormy
weather area. The concept of "approaching" must of course be formally specified. The
(letalls of this are really orthogonal to the issues of data-triggered processes; the formal
specification would define a many-to-many relation APPROACHING(ship,shiploc) and a
derivation rule defining APPROACHING In terms of ship's latitude, longitude, and heading
-- i.e., In terms of SHIPPOS and COORDINATES. The demon, which we name
STORMWARNING, Is defined by:

demon
STORMWARNING (ship, shiploci,
trictrr WEATHERSTATUS (shiploc. Stormy) A APPROACHING (ship, shiploc),
resoponse BROADCAST(ship,"storm at latitude * COORDINATES(shiploc, *.S)

a " longitude " a COORDINATES(shiploc,S,*))

* ene demon;
16

The trigger of this demon involves two relations, APPROACHING end

WEATHERSTATUS, which change as the process executes. It is Important to both the
relial)ility and maintainability of a specification that this behavior be stated as a
cohesive unit, rather than distributed in the various places In the process where it comes
Into play.

3.5 Temsporal Reference

As a process executes, information is being produced and consumed. In writing a
progirm to perform the process, a programmer must be concerned with the storage
spnce required to hold this information. Programs manifest this concern by using

compact or Implicit representations of information, by representing only that information
essential to correct execution, and, most pervasively, by releasing space used to store

information that is no longer needed. 1 7 In ai specification language, however, there is no
reason to be concerned with storage space as a finite resource. As a process
executes, the current collection of objects and associations changes, to be sure. But
the history of execution and database states is conceptually well defined, In the sense
thnt expressions and predicates can be assigned natural meanings with respect to past

times, as well as with respect to the current state.1 8 The primitive database operations
destroy, delete, and update are not destructive operations but, like insert and create,

alter the collection of current objects and/or associations.

t6The operator @ is being used for string concatenation, converting numbers to strings when applied to numerical
arguments.

t 7Programming languages include facilities, such as block structure and garbage collection, which help the programmer

de.al with this storage allocation problem. More importantly, as we shall see, programming languages simply do not
provide certain rich constructs, whose counterparts are available in natural language, that would make the storage
allocation problem too difficult for current compiler capabilihes.

t The eVecution of an action that changes a previous itate is not well defined, however; we leave research in this

area to the producers of Star Trek and adherents to certain political ideologies.

l A DATABASE FOUNDATION

In English. we commonly use expressions like "the President at the end of the Civil

War" and "If the car was Insured at the time of the accident ...". Syntactically,

'expression> at <temporal reference>
<expression> [before I after] <transition reference>

Wri thomselves <expression>s, whose vazuhs are the objects described by (expression>
In the referenced state. Similarly,

<predicate> at <temporal reference>
-predicate> (before I after] <transition reference>

nre, themselves (predlcate>s. A <temporal reference> specifies a past state of the
(ntn ibase. and implicitly the execution history preceding and following that state. 1 9 It
fors rnot Indicate a lexical point in the specification, and thus does not provide access to
previouis blndings of specification variables. A <transition reference) specifies a
particular data transition In the process history, and thus the before and after states of
that transition.

The value of temporal reference In a specification is that it enables data reference to
he localized at the point where the data Is needed. In a language permitting reference
to *'irnt data only, it becomes necessary to introduce auxiliary concepts, which have
no nanlog In the ideal world, to drag historical information through the execution so that it
will he curertf Information at the point of consumption. The existence of a global data
b)n.1n, chanqing in discrete steps and representing Information In a format Independent of
vnrilln bindings, provides the opportunity to incorporate temporal reference cleanly into
tho specification language.

Exainple

When filling a customer's order, a bill must be sent Indicating the cost for that order.
-Suppose that cost Is (in part) a function of the market price of the cargo when the order
ufls Plard, which may differ from the market price at billing time. If cargo and order refer
to a particular cargo and order, respectively, then the expression

MARKETPRICE (cargo, fer be fore crea t ion forder)

specifies the price of the cargo at the time the order was created.2 0

This permits temporal references to be built up in expression-like fashion.
Ohe varous forms for (temporal referencels and <transition reference>s, such as creation(<eGxoression)), have not

yet boen delineated, The forms appearing here are only meant to be suggestive of actual capabilities and syntax.

FOR PROCESS SPECIFICATIONS 1

3.6 Process Granularity

The domain model of typed objects and associations has a "natural" processing
cirantilarity. The primitive transitions at this level are insert, delete, update, create, and

destroy. The Ideal process being specified, however, may have a coarser granularity.
That Is, some conceptually Indivisible state transition In the Ideal can only be described
In terms of multiple primitive transitions.

Othors have recognized that the granularity differences affect the checking of
inte'rty constraints In database management systems. While it is desirable to state the
Inte(trlty constraints in terms of states of the ideal process, they may be violated in the
s t)irlous Intermediate states that exist as the database changes from the
repr ntation of one Ideal state to another. Suppose, for example, that ship's officers
In the Ideal process could be reassigned on occasion to new posts, with their salaries
chanrinq as part of the reassignment activity. Suppose, furthermore, that a salary floor
exists for captains. The finer grain of the data base can only represent a reassignment
as a se.quence of primitive operations. If the reassignment is specified by a (update
1)0t; up(into, salary) sequence, however, the salary floor constraint may be violated
temporarily when an officer is being upgraded to captain. The other order might violate
tho constraint when an officer was being demoted, or retired, and his salary reduced.
The resolution of this problem proposed in database systems is to Introduce the concept
of a tansaction, or structured operation, to capture the granularity of the ideal process, and
to have the system guarantee the Integrity of the data base only on completion of these
transactions, but not within them.

The same Issue must be faced in the specification language because the domain
constrnints and (lemon triggers are naturally defined with respect to states of the Ideal

process. But even In the absence of constraints and demons in a specification, it Is
Important to capture the granularity of the ideal process in the specified process. The
primary reason for this is the enhancement of maintainability. Adding a new constraint or
(lemon to a specification with the wrong granularity will not yield the desired new
specification. Furthermore, specification by reference to past states of a process (see
section 3.5) cannot be done naturally if the specified granularity is not matched to the
Ideal.

Rather than indicating when (particular) constraints and demons are to be checked,
the specifier should define indivisible database transitions matching the granularity in the
Idenl process. The resulting specification will define a process having no spurious
intermediate states. The construction:

atomic <statement>,; <statement>2 ; ... <statement>n end atomic

defines an Indivisible "macro" database transition as the composite of the transitions
defined by the <statement)>, which may range from primitive database operations to

complex control structures specifying, perhaps conditionally, database transitions. The
now transition defined by the block can be decomposed Into the unordered collection of

,aim------

20 A DATABASE FOUNDATION

)rlmltlvo transitions so specified.2 1 Since no intermediate states exist, all database

conditIonality in (statement) I is based on the state existing at the start of the atomic

block. and is independent of the partial transition specified by (statement> 1 , ...

(statement>i 1. In general, this makes it easier to specify macro transitions, since It Is

not necessary to give temporary names to Information about the Initial state that may be
neednd to compute the transition, but Is being destroyed by the transition.

Example

Suppose the data base includes the assignment of officers to ships, and the salaries

of these officers:

1U112 assignment; officer; salary, = integer in range 1000,40000];
position. , I Captain, Firstmatel

end tu=:
relit ion

SAL (officer, salary), de f ines officer;
POST (assignment, position, ship). def ines assignment:
FILLS (assignment, officer), k is assignment, officer

end relation

A type captain could be defined as an officer filling the position Captain on any ship. A
constraint can declare the lower bound on the salaries of captains.

captain, - I y:officerl3a: assignment FILLS(a,o) A POST(a, Captain,$) I I

constraint SAL((captain], *) < 13000 end constraint

An officer o could be transferred to a new assignment a by the action REASSIGN, which
delotes the FILLS tuple Indicating the previous officer filling a, updates the FILLS tuple
for o to Indicate o's new assignment, and updates the SAL tuple for o to Indicate a new
salary, which is some function FN of o's previous salary and the salary of the previous
officer filling a.

action
REASSIGN(o:officer, a:assignment), definition

atomic
delete FILLS(at);
update assignment in FILLS(S,o) to a:
update salary in SAL0,I1) to FNoldvalue,SAL(FILLS(a,*),,))

end atomic
end acti on

The definition of REASSIGN Is an atomic transition. The order of the three statements
within that definition is Immaterial. Constraints, such as the salary floor for captains,

must not be violated In the state resulting from the transition. Because this Is an atomic

transition, the argument to FN Is the salary of the previous officer filling a.

2 1 Th,is collection must satisfy certain well-formedness conditions to make sense. For example, it cannot include both
insertion of a new association involving an object and destruction of that object.

FOR PROCESS SPECIFICATIONS 21

It may be argued that the latter effect could be achieved even if the intermediate
states did exist, either by rearranging the order of operations in REASSIGN or by saving
the salary of the previous officer in a temporary. There are good reasons not to
Introduce such implementations of the transition into the specification. This is obvious If
n somewhnt more realistic situation is considered. In general, several officers may be
renslined or retired In a single transition In the ideal world. To achieve this as a
sequenco of state transitions would require either a sophisticated ordering of the
h ndlvidual reassignments or saving (potentially large amounts of) temporary data to
overcome the Intordependencies of the salaries. Either of these methods would obscure
con.sidernbly the specification of a data transition composed of a collection of simpler
transitions, each dependent only on the Initial data state. The atomic construction
permits a straightforward, and, thus, less error-prone, specification.

3.7 Cnstraints and Non-Determinisin

1Me many forms of declarative information introduced In the preceding sections have
hoen constfhining In nature. They serve to categorize certain database states, or state
trnlsitions, or processing sequences as arnmalous. The function of constraints In data
man.gement systems has been seen to be that of guaranteeing the Integrity of the
stored data [10, 11]. Any attempt to violate a constraint results in rejection of the data-
braso operation that would cause the violation (or, In some simple cases, a correction of
the. offending value).

liis use of constraints has two benefits. Obviously it provides a great deal of

protection to users, whether human or software, of the data. Furthermore, It opens up
thie potential for achieving considerable efficiency In a compilation process, through the
choice of both data structures and algorithms tailored to the constrained data and
constrained use thereof.

hlowever, this use of constraints relegates them to an essentially redundant role In

specification. That Is, in the best of all possible worlds, all constraints would in fact be

Implied by the process specification and input restrictions alone.2 2 In other words, If

Inputs to a valid implementation of our ship system were appropriate, there would be no
execution that would ever "attempt" to overload a ship, and thus the capacity constraint
would be Implicit In the specification.

If we look at natural language, however, we find constraints playing a more active
role. It is reasonable to say "choose a ship bound for Seattle and load 5000 tons of

corn onto It." It "goes without saying" that the non-deterministically described ship2 3

should have 5000 tons of spare capacity, and should not contain any Oil or Natural Gas,

2 2
Although of might be very difficult to express cert.in constraints in terms of constraints on input.

2 3 Throuohoul ths section, non-determnism is being treated only as a way of indicating a range of alternatives, any of

which is ,ceplbtlhe. An implementation of the spec,fication is free to behave in any of the acceptable ways, of in

different acceptable ways at different times, but need not cover all the allernatives or distribute its behavior among them

in any particular manner.

22 A DATABASE FOUNDATION

since these cannot be combined with Corn. In reality, it just "goes without resaying."
Ilavinq stated the constraints, It Is unnecessary In English to refine every descriptive
referenco to the point where the only objects satisfying the description are those

gutinrnnteed to be "valid" in the usage context.

Likewise, it Is undesirable to sprinkle predicates throughout a specification solely for
tie purpose of azioiding a conflict between the declared constraints and the specified
processing To do so would destroy the locality of the constraint declaration, not to

24mention the great burden it places on the specifier. Rather, the constraints should
affe(ct the semantics of the remainder of the specification.

Informally, this is accomplished by viewing the alternatives available for any
non-dotrministic construct in the specification as being limited not only to alternatives
meeting the local requirements of the construct, but to alternatives permitting the

process to be completed without violation of any constraint.2 5

More formally, possible executiotis of a specification containing non-deterministic
constrtcts can be viewed as forming a tree, with branches corresponding to alternative
continuations of the process (disregarding constraints). The paths leading from the root
of the tree to certain nodes may necessarily violate constraints or use anomalous
statements In reaching that node. Label all such nodes anomalous. Then

1. Prune away all subtrees below nodes labeled anomalous.

2. If every leaf of a subtree Is labeled anomalous, label the root of the
subtreo anomalous.

Rlepent steps I and 2 until no more nodes can be labeled. Then prune away each
remnining anomalous node and the branch linking it to its parent. If no tree remains, i.e.,
the root gets labeled anomalous, then the specification is inconsistent. Otherwise, the
remnining tree represents the subset of executions actually permitted (specified),
takinq constraints Into account. It Is entirely possible, and highly likely in the envisioned
usnq, that locally non-deterministic constructs turn out to be entirely deterministic
wheni constraints are considered.

Non-determinism comes Into a specification in several forms. Predicates formed from
patterns with unassigned variables used freely are frequently non-deterministic, as are
pnttorn-I)ased expressions. It is also possible to write expressions for "any" element of
a set, to express Iteration over elements of a set In a non-deterministic (including
arlitrary) order, and to express a collection of distinct statements as alternative
continuations of a process.

2 4PrngrAnmmer$ are of course familiar with this burden, for they are generally required to "compile in" constraints whel.

they write a program.
25 the uset of conrst raint here is to be taken, very generally, to include not only those constraints declared in the

sperificalion but also the use of anomalous statement.s and the universal constraints on well-formed manipulations of the
data b-ise; e.g, "thou shall not create and destroy the same object in a primitive transition."

FOn PROCESS SPECIFICATIONS 23

Local non-determinism, constrained away by global considerations, Is useful for
mnintaining locality of information in a specification. Where true non-determinism exists
In the Ideal world, it Is Important to capture the full range of acceptable alternatives In
the specification, so as not to unwittingly rule out efficient Implementations by
overconstraining.

Examiple

An action that would load a given volume of some cargo from one port onto any
avaIlable ship bound for another specified port could be defined by:

ac t i on
LOAD (cargo, vohme, port.!. port.2)

definition
beci in

Jship PORTOFCALL(ship, port.2);
MOVESHIP(ship, PIERPORT (*, port.))
LOADSHIP(ship, cargo, volume)

end
end .ct ion

The definition of LOAD Is a block that assigns to its local variable ship a ship having
pott 2 as a port of call. Then the action MOVESHIP is to be performed on that ship,
positloning It as some pier In port.I. Finally, the cargo Is actually loaded onto the ship.

MOVESHIP was defined earlier as:

ac t i nn
MOVESHIP (ship, pier),

precondition INPORT (ship. PIERPORT(pier, *))
definit ion

if MOORAGE (ship, pier) then
comment no movement needed end comment else
update slip in BERTH(ship, S) t SLIPS(pier,)

end ac t i on

Considerable use has been made of the interaction between constraints and
non-determinism. The predicate used to assign ship required only that the ship be bound
for pott.2. The precondition of MOVESHIP ensures that only ships in port.] can be
considered, since the ship Is to be moved to a pier In port.l. The capacity and
Incompatible cargo constraints, which could be violated by LOADSHIP, further restrict the
choice of ships.

The pier specified in the invocation of MOVESHIP is also non-deterministlcally
spercified to be any pier In port.!. However, since the pier selected will be the moorage
of tie ship when LOADSHIP is performed, the precondition of LOADSHIP ensures that
only a pier capable of handling cargo will be selected.

Finally, within MOVESHIP, the slip selected (in the case that the ship really needs to
be moved), Is constrained locally only to being any slip at the pier to which the ship is
being moved. However, since ships cannot share a slip (BERTH is a 1-1 relation), only
empty slips will be considered.

24 A DATABASE FOUNDATION

As n result, the constraints semantically "compile themselves" Into the specification,
restricting the ship, pier, and slip that must be fixed for the loading operation. A given
Invocatikot of LOADSHIP may be non-deterministic, deterministic, or even anomalous.

3.8 Aintaly Control

We give verbnl recognition to the potential anomaly of a statement In English by

enihc'ddlg It in phrases such as "Try .. ,", or " if possible." This same capability

l),lonq.s In specifications, for the alternatives are intolerable.2 6 This situation is distinct

front that In which a collection of equally acceptable statements is specified. Contrast

"lHiy four artichokes if you can; otherwise buy two pounds of peas" with "Buy either four

artichokes or two pounds of peas." In a specification, the recognition of potential

anomaly is dealt with by the construction:

attemnt <statement> 1 <statement>2 :... <statement> n end

which has the semantics of the first (statement> i which Is not anomalous.

4. CONCLUSION

This report has focused on those aspects of a formal process specification language
thrt rely heavily on concepts developed out of Codd's original work with relational data

bases. There are a number of other aspects to the language that embody the principles

outlined in [2].

A qood specification language, however, will not eliminate the difficulties in software

development. It will simplify the mapping from "ideal world" to formal statement, and will
ease the task of reflecting changes to the conception of that world In its formal

counterpart. Two steps remain In the path to useful computer software.

First, a specification, as presented in this report, defines a closed world of activity
responding to and altering Information. It is necessary to split this closed world Into a

software component and an environment to adequately specify what is to be implemented.

Second, the mapping from a specification in a language such as this to a program of

ocreptnble efficiency will rarely fall within the competence of existing, or even

re sonably foreseeable, compilers. Human Insight remains necessary. One approach Is

to require a programmer to relate his program to the specification In such a way that a

1This is a very difficult problem in programming. It the conditions making an activity anomalous can be tested at
,iiffiently low cost, a programmer will simply emh@d the activity in a conditional, essentially hand compiling the

con4lrints. When the lest is too expensive, or the programmer cannot even determine what an adequate test is, he must
resnrt to unconventonal control mechanisms, like error handling or backtracking.

FO PROcLSs SPECIFICATIONS 25

computer, perhaps with his aid, can verify its validity (1 7]. Another approach is for the
prnrlrnmmer to develop the implementation by sequentially transforming the specification
into nn acceptable program, with each step in the transformation sequence being
verified (or unverifiable assumptions recorded) [3].

Not all the richness of the specification language comes from constructions that
prohlil)it efficient automatic compilation, however. Many of the uses of patterns, type
hierarchies, and typed variables appear to border on, or fall within, the capacity of
currPnt compiler technology. Data management languages are an Ideal testing ground for
theso ideas, and we feel that their introduction would be of great benefit to users of
such languages.

Formally specifying a large system cannot be made an easy task, no matter how rich
or natural a language we provide. Mechanical aids to the creation of formal
.pecifications, particularly ones permitting use of some of the power of informality in
nnturnl Innguage [1], should help, but ultimately the creation of good specifications is an
art. For, among other things, a good specification lends itself to simple maintenance. It

Is the Insight and anticipation of the human who creates a specification that gives It this
property.

27

REFERENCES

1. Balzer, R., N. Goldman, and D. Wile, "Informality In program specifications," IEEE
Transactions on Software Engineering SE-4 (2), March 1978, 94-103.

2. Balzer, R., and N. Goldman, "Principles of good software specification and their
Implications for specification languages," In Specification of Reliable Software,
pp. 58-67, IEEE Computer Society, 1979.

3. Balzer, R., Transformational Implementation: An Example, USC/Information Sciences
Institute, RR-79-79, 1979.

4. Bobrow, D., and 0. Raphael, "New programming languages for artificial Intelligence
research," ACM Computing Surveys 6 (3), September 1974, 153-1 74.

5. Bobrow, D., and T. Winograd, "An overview of KRL, a knowledge representation
language," Cognitive Science 1 (1), January 1977, 3-46.

6. Burstall, R., and J. Goguen, "Putting theories together to make specifications," In
Fifth International Conference on Artificial Intelligence, pp. 1045-1058, August

1977.

7. Chen, P., "The entity-relationship model -- Toward a unified view of data," ACM
Transactions on Database Systems 1 (1), March 1976, 9-36.

8. Codd, E. F., "A relational model of data for large shared data banks," Communications
of the ACM 13 (6), June 1970, 377-387.

9. Geurts, L., and L. Meertens, Remarks on Abstracto, Mathematlsch Centrum, Technical

Report 99, November 1978.

10. Hammer, M., and D. McLeod, "A framework for data base semantic Integrity," In
Second International Conference on Software Engineering, pp. 498-504, October

1976.

11. Hammer, M., and D. McLeod, "The semantic data model: A modelling mechanism for

data base applications," In International Conference on the Management of Data, ACM
SIGMOD, May 1978.

12. Hill, I.D., "Wouldn't it be nice if we could write computer programs in ordinary English
-- or would It? " Computer Bulletin 16 (6), June 1972, 306-312.

13. Liskov, B., A. Snyder, R. Atkinson, and C. Schaffert, "Abstraction mechanisms in
CLU," Communications of the ACM 20 (8), August 1977, 564-576.

14. Smith, J., and D. Smith, "Database abstractions: aggregation and generalization,"

ACM Transactions on Database Systems 2 (2), June 1977, 105-133.

28

15. Sowa, J., "Conceptual graphs for a database Interface," IBM JR 20 (4), July
1976, 338-357.

16. Wlnograd, T., "Beyond programming languages," Communications of the ACM 22 (7),
July 1979. 391-401.

17. Wulf, W., R. London, and M. Shaw, "An Introduction to the construction and
verification of Alphard programs," IEEE Transactions on Software Engineering SE-2
(4), December 1976, 253-265.

e

